163. Triazènes. Etude XPS. et ¹H-RMN. des complexes mercuriques des diaryl-1,3-triazènes

par Jean-Claude Maire, André Baldy, Daniel Boyer, Pierre Llopiz

Laboratoire des Organométalliques

par Gaston Vernin¹)

Laboratoire de Chimie Moléculaire, Associé au CNRS., Faculté des Sciences et Techniques de St-Jérôme, Rue Henri Poincaré, 13397 Marseille Cedex 4

et par Beni Prashad Bachlas

Department of Chemistry, University of Rajasthan, Jaipur 302004 (India)

(18.1.79)

XPS. and ¹H-NMR. spectra of 1,3-diaryltriazenes complexes of Hg(II)

Summary

The core binding energies C 1s, N 1s, Hg $4f_{7/2}$, Hg $4f_{5/2}$ in 7 symmetrical *p*-substituted 1,3-diphenyltriazenes complexes of Hg(II) have been measured by XPS. Within the limits of experimental error (±0.2 eV) only one N 1s signal could be detected. This indicates the equivalence of the 3 N-atoms. Invariance of C 1s, N 1s, Hg $4f_{7/2}$, Hg $4d_{5/2}$ signals with the *para* substituents on the phenyl ring is explained on the basis of ionic character in the Hg, N bond. These results are corroborated by the ¹H-NMR. spectra.

Introduction. – Les spectres photoélectroniques dans l'ultraviolet (UPS.) d'halogénures de mercure HgX₂, d'halogénures de méthylmercure CH₃HgX, de diméthylet diéthylmercure [1], ainsi que des composés CF₃HgX, ont fait l'objet d'études antérieures afin d'évaluer l'interaction spin-orbite [2] et afin d'estimer la participation aux liaisons orbitales 5*d* du mercure dans les molécules du type XHgY (X, Y = CH₃, CN) [3]. Cependant, aucune étude par spectroscopie photoélectronique de rayons X (XPS.) de composés Hg(II) contenant une liaison Hg-N n'a été faite jusqu'ici. Nous avons choisi d'étudier les complexes mercuriques de diaryl-1,3triazènes.

¹) Auteur de correspondance.

0018-019X/79/5/1566-04\$01.00/0

© 1979 Schweizerische Chemische Gesellschaft

Résultats. - Il a été montré [4] [5] que d'une part, les métaux de transition peuvent déplacer l'atome d'hydrogène de la fonction imine des diaryl-1,3-triazènes et que d'autre part, l'acide parent et son anion dérivé se comportent comme des ligands bidentates.

A partir des mesures de masse moléculaire par ébullioscopie, une structure plan carré mononucléaire a été attribuée aux complexes Cu(II) et Pd(II) [4] et une structure plan carré binucléaire aux complexes dimères diamagnétiques Ni(II) [5].

Figure. Spectre XPS du composé 5 $(Ar=p-BrC_6H_4)$ enregistré en séquence large (a) et en séquence étroite (b)

Le caractère bidentate du ligand triazène a été proposé [6] dans le cas de complexes Hg(II). Récemment, des études de spectroscopie électronique et vibrationnelle ont montré [7] que pour le ligand triazène, l'ordre de liaison du motif $__N = N = N_{--}$ est 1,5. Nous pensons que celui-ci est conservé dans

Tableau 1. Potentiels d'ionisation de C 1s, N 1s, Hg $4f_{7/2}$, Hg $4f_{5/2}$, Hg $4d_{5/2}$ de diaryl-1, 3-triazènes^a)

C 1 <i>s</i>	N 1 <i>s</i>	Hg $4f_{7/2}$	Hg 4f _{5/2}	Hg $4d_{5/2}$
284,8 (3,0)	399,5 (3,2)	101,0 (3,2)	104,9 (2,2)	358,9 (4,6)
284,6 (2,9)	399,7 (3,2)	100,8 (2,3)	104,7 (2,3)	360,1 (4,2)
284,8 (3,3)	399,9 (3,4)	101,2 (2,5)	105,1 (2,5)	360,3 (4,5)
284,6 (2,9)	400,0 (3,3)	100,9 (2,3)	104,6 (2,4)	359,9 (4,6)
284,7 (2,8)	399,7 (3,2)	101,2 (2,4)	105,1 (2,3)	360,0 (4,5)
284,6 (3,4)	399,7 (3,3)	101,0 (2,4)	104,8 (2,3)	359,6 (4,3)
284,6 (2,8)	399,6 (3,4)	100,7 (2,2)	104,8 (2,2)	359,7 (4,5)
287,6				
	C 1s 284,8 (3,0) 284,6 (2,9) 284,8 (3,3) 284,6 (2,9) 284,7 (2,8) 284,6 (3,4) 284,6 (2,8) 287,6	C 1s N 1s 284,8 (3,0) 399,5 (3,2) 284,6 (2,9) 399,7 (3,2) 284,8 (3,3) 399,9 (3,4) 284,6 (2,9) 400,0 (3,3) 284,7 (2,8) 399,7 (3,2) 284,6 (3,4) 399,7 (3,3) 284,6 (2,8) 399,6 (3,4) 284,6 (2,8) 399,6 (3,4)	C 1sN 1sHg $4f_{7/2}$ 284,8 (3,0)399,5 (3,2)101,0 (3,2)284,6 (2,9)399,7 (3,2)100,8 (2,3)284,8 (3,3)399,9 (3,4)101,2 (2,5)284,6 (2,9)400,0 (3,3)100,9 (2,3)284,7 (2,8)399,7 (3,2)101,2 (2,4)284,6 (3,4)399,7 (3,3)101,0 (2,4)284,6 (2,8)399,6 (3,4)100,7 (2,2)287,6 $$	C 1sN 1sHg $4f_{7/2}$ Hg $4f_{5/2}$ 284,8 (3,0)399,5 (3,2)101,0 (3,2)104,9 (2,2)284,6 (2,9)399,7 (3,2)100,8 (2,3)104,7 (2,3)284,8 (3,3)399,9 (3,4)101,2 (2,5)105,1 (2,5)284,6 (2,9)400,0 (3,3)100,9 (2,3)104,6 (2,4)284,7 (2,8)399,7 (3,2)101,2 (2,4)105,1 (2,3)284,6 (3,4)399,7 (3,3)101,0 (2,4)104,8 (2,3)284,6 (2,8)399,6 (3,4)100,7 (2,2)104,8 (2,2)287,6555

Les largeurs à mi-hauteur sont données entre parenthèses.

Tableau 2. Déplacements chimiques en ¹H-RMN. des complexes mercuriques des diaryl-1, 3-triazènes^a)

Ar		Solvant	δ ppm/TMS (J=Hz)
	1	Pyridine(D ₅)	7,95 (d, $J = 8$, H ¹); 7,50 (t, $J = 8$, H ²); 7,17 (t, $J = 8$, H ³)
H ¹ H ² CH ₃	2	Pyridine(D5)	7,88 (d , $J = 8$, H^1); 7,32 (d , $J = 8$, H^2); 2,30 (s , CH_3)
	4	Pyridine(D5)	7,82 (d , J = 8, H ¹); 7,50 (d , J = 8, H ²)
	5	Pyridine(D5)	7,76 (d , J = 8, H ¹); 7,64 (d , J = 8, H ²)
	6	Pyridine(D ₅)	7,76 (s, 4 H)
	7	Pyridine(D ₅)	8,28 (d, $J=8$, H ²); 8,02 (d, $J=8$, H ¹); 2,60 (s, CH ₃)
	8	Pyridine(D ₅)	8,30 (<i>d</i> , $J=8$, H ²); 8,00 (<i>d</i> , $J=8$, H ¹); 4,35 (<i>qa</i> , $J=7$, CH ₂); 1,25 (<i>t</i> , $J=7$, CH ₃)
a) Ces spectres or	at été	enregistrés sur un	appareil Varian XL 100 en transformé de Fourier. Les

a) Ces spectres ont ete enregistres sur un appareit varian XL 100 en transforme de Fourier. Les abréviations utilisées sont les suivantes: s = singulet, d = doublet, t = triplet et qa = quadruplet.

les complexes Hg(II) et nous avons cherché à confirmer ce point par XPS. Suivant la structure binucléaire ou mononucléaire nous devons attendre soit 3, soit 2 types d'atomes d'azote.

L'erreur expérimentale dans la mesure et la reproductibilité des énergies de liaison est de ± 0.2 eV.

Les spectres XPS. ne révèlent qu'un seul signal N 1s. L'augmentation de résolution par fermeture des fentes de l'appareil confirme la présence d'un seul type d'atome d'azote.

De plus les signaux C 1s, N 1s, Hg $4f_{7/2}$, Hg $4f_{5/2}$, Hg $4d_{5/2}$ ne varient pas avec la nature des substituants sur le noyau aromatique (cf. Tabl. 1).

Ces résultats peuvent être interprétés de la façon suivante: a) comme dans le cas du ligand libre l'ordre de liaison du motif azoté $__N ___ N ___ N ___ N$ est 1,5 et la densité électronique est uniformément répartie sur les 3 atomes d'azote. Une étude ¹H-RMN. de ces mêmes complexes montre l'équivalence magnétique des protons aromatiques ainsi que celle des substituants en *para*. Cette équivalence implique des chélates parfaitement symétriques et confirme donc notre conclusion.

b) L'ion Hg^{2+} étant un acide mou, son interaction avec la base dure que constitue la molécule de triazène *para*-substitué sur le noyau aromatique conduit à donner un caractère ionique très prononcé à la liaison Hg-N de sorte que l'effet produit par le substituant du cycle aromatique est très faible.

Partie expérimentale

Les complexes mercuriques des diphényl-1,3-triazènes *para*-substitués 1-8 ont été préparés par condensation des arylamines correspondantes avec le nitrite d'isopentyle en présence d'acétate de mercure [8], dans le méthanol à température ambiante [4].

Les spectres XPS. ont été enregistrés sur un appareil *Esca IV Vacuum Generators* Ltd, utilisant la raie Ka du magnésium (1253,6 eV, FWHM=0,75 eV) comme source d'irradiation. La largeur des fentes d'entrée et de sortie de l'analyseur est de 4 mm. La référence interne est l'or déposé par évaporation: Au $4f_{7/2}$ = 84 eV. L'appareil est couplé à un ordinateur *PDP 8E* permettant l'accumulation et le traitement des données. Nos résultats ont été obtenus de deux manières différentes. Pour chaque complexe, nous avons programmé: 1) une séquence large de 50 à 420 eV (B.E.) afin de couvrir les bandes principales de tous les éléments présents dans la molécule; 2) plusieurs séquences étroites balayant 10 eV de part et d'autre d'une valeur centrale correspondant à un élément précis. Dans les deux cas, les mesures ont été faites en accumulation sur 20 passages.

BIBLIOGRAPHIE

- [1] J.H.D. Eland, Int. J. Mass Spectrom. Ion Phys. 4, 37 (1970).
- [2] K. Wittel, B.S. Mohanty & R. Manne, J. electr. Spectrosc. Rel. Phenom. 5, 115 (1974). Chem. Abstr., 91929S.
- [3] P. Burroughs, S. Evans, A. Hamnett, A.F. Orchard & N.V. Richardson, J. chem. Soc. Chem. Commun. 1974, 921.
- [4] F.P. Dwyer, J. Amer. chem. Soc. 63, 78 (1941).
- [5] F. P. Dwyer & D. P. Mellor, J. Amer. chem. Soc. 63, 81 (1941).
- [6] C.M. Harris, B.F. Hoskins & R.L. Martin, J. chem. Soc. 1959, 3728.
- [7] T.G. Meisier, M.S. Babuskina, A.V. Sechkarev & A.V. Vorshunov, Vopr. Mol. Specktrosk. 1974, 242.
- [8] G. Vernin, C. Siv & J. Metzger, Synthesis 1977, 691.